
HPC I/O for Computational Scientists:
Understanding I/O

Presented to
ATPESC 2017 Participants

Rob Latham and Phil Carns
Mathematics and Computer Science Division
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
8/4/2017

ATPESC 2017, July 30 ± August 11, 20172

Motivation for
Characterizing parallel I/O

· Most scientific domains are
increasingly data intensive:
climate, physics, biology and
much more

· Upcoming platforms include
complex hierarchical
storage systems

How can we
maximize productivity
in this environment?

Times are changing in HPC storage!

Example visualizations from
the Human Connectome
Project, CERN/LHC, and the
Parallel Ocean Program

The NERSC burst buffer roadmap and architecture, including solid
state burst buffers that can be used in a variety of ways

ATPESC 2017, July 30 ± August 11, 20173

Key challenges

· Instrumentation :
± What do we measure?
± How much overhead is acceptable and when?

· Analysis :
± How do we correlate data and extract actionable information?
± Can we identify the root cause of performance problems?

· Impact:
± Develop best practices and tune applications
± Improve system software
± Design and procure better systems

3

CHARACTERIZING APPLICATION I/O

WITH DARSHAN

ATPESC 2017, July 30 ± August 11, 20175

What is Darshan?
Darshan is a scalable HPC I/O characterization tool. It captures an
accurate but concise picture of application I/O behavior with
minimum overhead.

· No code changes, easy to use
± Negligible performance impact: just ªleave it onº
± Enabled by default at ALCF, NERSC, NCSA, and KAUST
± Installed and available for case by case use at many other sites

· Produces a summary of I/O activity for each job, including:
± Counters for file access operations

± Time stamps and cumulative timers for key operations

± Histograms of access, stride, datatype, and extent sizes

5

Project began in 2008, first public software
release and deployment in 2009

ATPESC 2017, July 30 ± August 11, 20176

Darshan design principles

· The Darshan run time library is inserted at link time (for static
executables) or at run time (for dynamic executables)

· Transparent wrappers for I/O functions collect per-file statistics

· Statistics are stored in bounded memory at each rank

· At shutdown time:
± Collective reduction to merge shared file records
± Parallel compression
± Collective write to a single log file

· No communication or storage operations until shutdown

· Command-line tools are used to post-process log files

6

ATPESC 2017, July 30 ± August 11, 20177

JOB analysis example

Example: Darshan-job-summary.pl
produces a 3-page PDF file
summarizing various aspects of I/O
performance

Estimated performance

Percentage of runtime in I/O

Access size histogram

Access type histograms

File usage

ATPESC 2017, July 30 ± August 11, 20178

SYSTEM analysis example

· With a sufficient archive of
performance statistics, we can
develop heuristics to detect
anomalous behavior

8

� This example highlights large jobs that spent a
disproportionate amount of time managing file
metadata rather than performing raw data transfer

� Worst offender spent 99% of I/O time in
open/close/stat/seek

� This identification process is not yet automated;
alerts/triggers are needed in future work for greater
impact

Example of heuristics applied to a population of
production jobs on the Hopper system in 2013:

Carns et al., ªProduction I/O Characterization on the Cray XE6,º In
Proceedings of the Cray User Group meeting 2013 (CUG 2013).

ATPESC 2017, July 30 ± August 11, 20179

Performance:
function wrapping overhead

� What is the cost of interposing Darshan I/O instrumentation wrappers?

· To test, we compare observed I/O time of an IOR configuration
linked against different Darshan versions on Edison

· File-per-process workload, 6,000 processes, over 12 million
instrumented calls

Type of Darshan builds now
deployed on Theta and Cori

Why the box plots? Recall
observation from this morning that
variability is a constant theme in
HPC I/O today.

(note that the Y axis labels start at 40)

Snyder et al. Modular HPC I/O Characterization with Darshan. In Proceedings
of 5th Workshop on Extreme-scale Programming Tools (ESPT 2016), 2016.

ATPESC 2017, July 30 ± August 11, 201710

Performance: shutdown overhead

· Involves aggregating, compressing, and collectively writing I/O
data records

· To test, synthetic workloads are injected into Darshan and resulting
shutdown time is measured on Edison

Near constant shutdown time of
~100 ms in all cases

Shutdown time scales linearly with job size:

5-6s extra shutdown time with 12,000 files

single shared file file-per-process

USING DARSHAN IN PRACTICE

ATPESC 2017, July 30 ± August 11, 201712

Typical deployment and usage

· Darshan usage on Mira, Cetus, Vesta, Theta,
Cori, or Edison, abridged:
± Run your job
± If the job calls MPI_Finalize(), log will be stored in

DARSHAN_LOG_DIR/month /day/
± Theta: /lus/theta-fs0/logs/darshan/theta
± Use tools (next slides) to interpret log

· On Titan: ªmodule load darshanº first

· Links to documentation with details will be
given at the end of this presentation

12

ATPESC 2017, July 30 ± August 11, 201713

Generating job summaries

· Run job and find its log file:

· Copy log files to save, generate PDF summaries:

13

Job id

Corresponding
log file in today's
directory

Copy out logs

List logs

Load ªlatexº module,
(if needed)

Generate PDF

ATPESC 2017, July 30 ± August 11, 201714

First page of summary

14

Common questions:

· Did I spend much time performing IO?
· What were the access sizes?
· How many files where opened, and

how big were they?

ATPESC 2017, July 30 ± August 11, 201715

Second page of summary (excerpt)

15

Common questions:

· Where in the timeline of the execution did eac
rank do I/O?

There are additional graphs in the PDF file with increasingly detailed information.
You can also dump all data from the log in text format using ªdarshan-parserº.

TIPS AND TRICKS: ENABLING ADDITIONAL DATA
CAPTURE

ATPESC 2017, July 30 ± August 11, 201717

What if you are doing shared-file IO?

17

� Your timeline might look like this

� No per-process information available
because the data was aggregated by
Darshan to save space/overhead

� Is that important? It depends on what
you need to learn about your
application.
± It may be interesting for applications

that access the same file in distinct
phases over time

ATPESC 2017, July 30 ± August 11, 201718

What if you are doing shared-file IO?

18

� Set environment variable to disable shared file
reductions

� Increases overhead and log file size, but provides
per-rank info even on shared files

ATPESC 2017, July 30 ± August 11, 201719

Detailed trace data

19

� Set environment variable to enable ªDXTº tracing

� This causes additional overhead and larger files, but
captures precise access data

� Parse trace with ªdarshan-dxt-parserº

Feature contributed by
Cong Xu and Intel's High
Performance Data Division

Cong Xu et. al, "DXT:
Darshan eXtended Tracing",
Cray User Group Conference
2017

DARSHAN FUTURE WORK

ATPESC 2017, July 30 ± August 11, 201721

What's new?
Modularized instrumentation

· Frequently asked question:
Can I add instrumentation for X?

· Darshan has been re-architected as a
modular framework to help facilitate this,
starting in v3.0

21

Snyder et al. Modular HPC I/O Characterization with
Darshan. In Proceedings of 5th Workshop on Extreme-
scale Programming Tools (ESPT 2016), 2016.

Self-describing log format

ATPESC 2017, July 30 ± August 11, 201722

Darshan Module example

· We are using the modular
framework to integrate more data
sources and simplify the
connections between various
components in the stack

· This is a good way for
collaborators to get involved in
Darshan development

22

ATPESC 2017, July 30 ± August 11, 201723

The need for HOLISTIC characterization

· We've used Darshan to improving application productivity with case
studies, application tuning, and user education

· ... But challenges remain:
± What other factors influence performance?
± What if the problem is beyond a user's control?
± The user population evolves over time; how do we stay engaged?

23

ATPESC 2017, July 30 ± August 11, 201724

ªI observed performance XYZ. Now what?º

· A climate vs. weather analogy: It is snowing in Atlanta, Georgia.
Is that normal?

· You need context to know:
± Does it ever snow there?
± What time of year is it?
± What was the temperature yesterday?
± Do your neighbors see snow too?
± Should you look at it first hand?

· It is similarly difficult to understand a single application performance
measurement without broader context. How do we differentiate
typical I/O climate from extreme I/O weather events ?

24

+ = ?

ATPESC 2017, July 30 ± August 11, 201725

Characterizing the I/O system

· We need a big picture view

· No lack of instrumentation
methods for system
components¼
± but with divergent data formats,

resolutions, and scope

25

ATPESC 2017, July 30 ± August 11, 201726

Characterizing the I/O system

· We need a big picture view

· No lack of instrumentation
methods for system
components¼
± but with wildly divergent data

formats, resolutions, and scope

· This is the motivation for the
TOKIO (TOtal Knowledge of
I/O) project:
± Integrate, correlate, and analyze

I/O behavior from the system as a
whole for holistic understanding

26

Holistic I/O characterization

https://www.nersc.gov/research-and-development/tokio/

ATPESC 2017, July 30 ± August 11, 201727

TOKIO Strategy

· Integrate existing best-in-class instrumentation tools with help from
vendors

· Index and query data sources in their native format
± Infrastructure to align and link data sets
± Adapters/parsers to produce coherent views on demand

· Develop integration and analysis methods

· Produce tools that share a common interface and data format
± Correlation, data mining, dashboards, etc.

27

The TOKIO project is a collaboration between LBL and ANL
PI: Nick Wright (LBL), Collaborators: Suren Byna, Glenn Lockwood,

William Yoo, Prabhat, Jialin Liu (LBL) Phil Carns, Shane Snyder, Kevin
Harms, Zach Nault, Matthieu Dorier, Rob Ross (ANL)

ATPESC 2017, July 30 ± August 11, 201728

UMAMI example

TOKIO Unified Measurements And Metrics Interface

28

� UMAMI is a pluggable dashboard that displays the
I/O performance of an application in context with
system telemetry and historical records

Each metric is shown
in a separate row

Historical samples (for a
given application) are
plotted over time

Box plots relate current
values to overall
variance

(figures courtesy of Glenn Lockwood, NERSC)

ATPESC 2017, July 30 ± August 11, 201729

UMAMI example

TOKIO Unified Measurements And Metrics Interface

29

System background
load is typical

Performance for this job
is higher than usual

Server CPU load is low
after a long-term steady
climb

Corresponds to data
purge that freed up disk
blocks

� Broader contextual clues simplify interpretation of
unusual performance measurements

ATPESC 2017, July 30 ± August 11, 201730

Hands on exercises

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on-2017

· There are hands-on exercises available for you to try out during the
day or in tonight's session
± Demonstrates running applications and analyzing I/O on Theta
± Try some examples and see if you can find the I/O problem!

· We can also answer questions about your own applications
± Try it on Theta, Mira, Cetus, Vesta, Cori, Edison, or Titan
± (note: the Mira, Vesta, and Cetus Darshan versions are a little

older and will differ slightly in details from this presentation)

30

ATPESC 2017, July 30 ± August 11, 201731

Next up!

· This presentation covered how to evaluate I/O and tune your
application.

· The next presentation will walk through the HDF5 data management
library.

